Evaluating the immunogenicity of an intranasal vaccine against nicotine in mice using the Adjuvant Finlay Proteoliposome (AFPL1)
نویسندگان
چکیده
Tobacco smoking is recognized as a global pandemic resulting in 6 million deaths per year. Despite a variety of anti-smoking products available to aid with tobacco cessation, the majority of people who attempt to quit smoking relapse within 6 months due to the addictive nature of nicotine. An immunotherapy approach could offer a promising treatment option by inducing a potent selective antibody response against nicotine in order to block its distribution to the brain and its addictive effects in the central nervous system. Our nicotine vaccine candidate was administered intranasally using the Neisseria meningitidis serogroup B Adjuvant Finlay Proteoliposome 1 (AFPL1) as a part of the delivery system. This system was designed to generate a robust immune response by stimulating IL-1β production through Toll-like receptor 4 (TLR4), a potent mechanism for mucosal immunity. The vaccine induced high antibody titers in mice sera in addition to inducing mucosal antibodies. The efficacy of our vaccine was demonstrated using in vivo challenge experiments with radioactive [(3)H]-nicotine, followed by an analysis of nicotine distribution in the lung, liver, blood and brain. Our results were encouraging as the nicotine concentration in the brain tissue of mice vaccinated with our candidate vaccine was four times lower than in non-vaccinated controls; suggesting that the anti-nicotine antibodies were able to block nicotine from crossing the blood brain barrier. In summary, we have developed a novel nicotine vaccine for the treatment of tobacco addiction by intranasal administration and also demonstrated that the AFPL1 can be used as a potential adjuvant for this vaccine design.
منابع مشابه
Evaluation of immunogenicity of recombinant influenza nucleoprotein (NP) for universal vaccine
Background: Influenza vaccines based on conserved proteins are being developed persistently. The conserved protein vaccines based on Nucleoprotein (NP) are highly protected vaccines against influenza viruses that can be used as a Universal vaccine. Aluminum hydroxide (Alum) is the most common adjuvant used in vaccine formulation to improve immunization by altering the epitopes’ folds. However, ...
متن کاملImproved Immunogenicity of Tetanus Toxoid by Brucella abortus S19 LPS Adjuvant
Background: Adjuvants are used to increase the immunogenicity of new generation vaccines, especially those based on recombinant proteins. Despite immunostimulatory properties, the use of bacterial lipopolysaccharide (LPS) as an adjuvant has been hampered due to its toxicity and pyrogenicity. Brucella abortus LPS is less toxic and has no pyrogenic properties compared to LPS from other gram nega...
متن کاملPotentiation of human papilloma vaccine candidate using naloxone/alum mixture as an adjuvant: increasing immunogenicity of HPV-16E7d vaccine
Objective(s): Many types of human papillomaviruses (HPVs) have been identified, with some leading to cancer and others to skin lesions such as anogenital warts. Studies have demonstrated an association between oncogenic HPV and cervical cancer and many researchers have focused on therapeutic vaccines development. At present, the modulatory effect of opioids on the innate and acquired immune sys...
متن کاملImmunogenicity evaluation of rBoNT/E nanovaccine after mucosal administration
Objective(s): The Botulism syndrome is caused by types A to G of botulinum neurotoxins. The binding domains of these neurotoxins are immunogenic and considered as appropriate candidate vaccines. Due to the low immunogenicity of recombinant vaccines, there have been many studies on the use of biocompatible carriers such as chitosan nanoparticles for the delivery of these vaccines. The aim of thi...
متن کاملConstruction and assessment of the immunogenicity and bactericidal activity of fusion protein porin A from Neisseria meningitidis serogroups A and B admixed with OMV adjuvant as a novel vaccine candidate
Objective(s): The porins A and B and also outer membrane vesicles (OMVs) of Neisseria meningitidis are used for vaccine purposes. In the present study, we aimed to design a new vaccine candidate based on a fusion of PorA of serogroups A and B of N. meningitidis admixed with OMV and evaluate it in an animal model.Materials and Methods: Af...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2 شماره
صفحات -
تاریخ انتشار 2016